Issue link: https://resources.mouser.com/i/1315957
| 50 distributed denial-of-service (DDoS) attacks. The rush to link 5G components into nascent 5G networks mirrors this flawed approach on a potentially wider scale. Worse, this same goldrush mentality threatens the broader set of 5G services as major cellular players and new participants hurry to field their offerings. History shows that ensuring security in complex software systems is hard to achieve, and typically, the test phase pays the price for schedule shortfalls. Evolving Standards Aside from the expected difficulties of systems integration, 5G developers are dealing with an inherently complex framework where standards and fundamental issues are still evolving. Industry stakeholders continue to work through many details involved in setting standards for critical features including key security agreements, authentications, and PII transports. Though challenging in itself, defining these standards also creates additional challenges, especially with the need to maximize security and privacy in the 5G domain while also maintaining compatibility with previous generation networks. 5G connectivity through multiple access networks, including Wi-Fi, further complicates the model's standards and its fundamental security protocols. As standards evolve for 5G networks, 5G security will continue to face a broad array of threats from familiar attack vectors as well as new attack vectors looking to exploit the novel elements of 5G networks. For example, a 5G network formed from familiar technologies such as SDN and virtualization faces the same threats that have followed each of these embedded technologies, but the integration of these technologies into 5G networks also presents completely new avenues of attack. Case in point, the files used to dynamically configure a network or build a slice face a series of threats similar to firmware updates in smart products. To secure the configuration process, 5G network providers will not only need to apply secure update mechanisms but also embed them within higher level security policies. In turn, these policies will need to encompass middleware and higher level services and even involve cooperating entities at the enterprise level. Defining the appropriate trust models and implementing them in dynamically changing networks will take some time to establish, much less optimize. Is the 5G Network Secure "Enough"? There are earnest and widespread efforts taking shape to build trust models and define comprehensive security measures for the new 5G network infrastructure. However, these efforts are not strongly established yet, especially to a level that prevents the most security-conscious organization from carefully weighing the total costs of security against the sheer magnitude of the coming 5G market opportunities. In fact, it would be unrealistic to expect that a framework intended to connect untold numbers of devices, services, and individuals could ever achieve "complete" security. In practice, a system only needs to be secure "enough," shifting the requirement from one of attempting to identify every threat to one of building security into the foundation of the system. Even with the many 5G features available for enhancing security, the most fundamental approach lies in maintaining constant security awareness for each component of a 5G network. This approach means implementing security by design rather than patching security holes after attacks have already taken their toll.