Issue link: https://resources.mouser.com/i/1437660
19 Saving Power for the Future | ADI and suffice for currents to 60mA. For higher charge currents, external MOSFETs can be used. Timers are also provided to adjust the balancing time. Advantages of the dissipative technique are low cost and low complexity. Disadvantages are high energy loss and a more complex thermal design. Active balancing, on the other hand, redistributes the excess energy between the other cells of the module. This way, the energy is recovered and less heat is generated. The disadvantage of such a technique is a more complex hardware design. Figure 9 shows an active balancing implementation using the LT8584. This architecture solves the problems of passive shunting balancers by actively shunting the charging current and returning the energy back to the battery stack. Instead of the energy being lost as heat, it is reused to charge the rest of the batteries in the stack. The architecture of the device also solves the problem of reduced run time when one or more of the cells in the stack reaches the lower safety voltage threshold before the entire stack capacity is extracted. Only active balancing can redistribute the charge from the stronger cells to the weaker cells. This allows the weaker cells to continue to supply the load, extracting the highest percentage of energy from the battery. The flyback topology allows the charge to return between any two points in the battery stack. Most applications return the charge to the module cells (12 or more), others return the charge to the entire battery stack, and some applications return the charge to an auxiliary power rail. Conclusion Electrification is the key for lower emission vehicles, but requires a smart management of the energy source—the Li-Ion battery. If not managed properly, a battery pack can become unreliable, and drastically reduce the safety of the automobile. High accuracy helps maximize the performance and the life of the battery. Active and passive cell balancing allow a safe and efficient battery management. Distributed battery modules are easily supported, and a robust communication of the data to the BMS controller, both wired and wireless, allows reliable SOC and SOH calculations. A 12-cell battery stack module with active balancing 9